Analysis and Control of Functional Brain Networks

Fabio Pasqualetti

October 16, 2023

Department of Mechanical Engineering University of California at Riverside

UC RIVERSIDE

Who really did the work

Giacomo Baggio

en Qin

1/35

Why should we reverse-engineer the brain?

• personalized therapies & reversal of cognitive decline

nic]

Why should we reverse-engineer the brain?

- personalized therapies & reversal of cognitive decline
- efficient computing systems & brain-computer interfaces

Why should we reverse-engineer the brain?

- personalized therapies & reversal of cognitive decline
- efficient computing systems & brain-computer interfaces
- next generation machine intelligence

[Deepmind]

neural scale

Models and scales of interest

Models and scales of interest

Models and scales of interest

Functional patterns of brain activity

Functional patterns of brain activity

- synchrony between brain regions long known (EEG, fMRI, [Berger & Gray, 1929])
- rich repertoire of synchrony patters (transient, long-range, clustered)
- different patterns are biomarkers of health and disease (epilepsy, Parkinson's)

- nodes = brain regions; edges = bundles of white matter fibers
- static brain networks carry structural and statistical information
- dynamic brain networks are useful for the prediction & control of neural dynamics

6/35

Resting-state activity modeled by phase oscillators

each node of the brain network captures the dynamics of a population of neurons

7/35

Excitatory Inhibitory

Resting-state activity modeled by phase oscillators

excitatory and inhibitory communities are in a regime of self-sustained oscillations (weakly coupled Wilson-Cowan) [Hoppensteadt and Izhikevich, 1997]

> neurons' firing rates describe a limit cycle

dynamics approximated by a single phase variable [Cabral et al., 2011]

Resting-state activity modeled by phase oscillators

Resting-state activity modeled by phase oscillators

Dynamical brain network to simulate neural activity

dynamical brain network with:

nodes = brain regions

edges = white matter fibers

node dynamics = Kuramoto

8/35

Sanity check

Oscillator properties and functional patterns

Oscillator properties and functional patterns

10/35

Invariance of cluster synchronization

oscillators 4 and 5 remain phase synchronized if:

- $\bullet\,$ diff. of natural frequencies =- diff. external coupling at all times
- equal natural frequencies $(\omega_4=\omega_5)$ and equal coupling $(a_{43}=a_{56})$

• the network weights are balanced

[Menara et al., 2020 TCNS]

balanced weights for partition $\mathcal{P} = \{\mathcal{C}_1, \mathcal{C}_2, \dots\}$:

$$\sum_{z \in \mathcal{C}_\ell} a_{iz} - a_{jz} = 0 \text{ for all } i, j \in \mathcal{C}_k \text{ and all partitions } \mathcal{C}_\ell \neq \mathcal{C}_k$$

13/35

Invariance of cluster synchronization

Invariance of cluster synchronization

Cluster invariance in empirical brain networks

Cluster invariance in empirical brain networks

Cluster invariance in empirical brain networks

Local stability of cluster synchronization

Stability of multiple clusters

15/35

[Menara et al., 2020 TCNS]

X34

3

An example

17/35

• network weights provide conservative estimates of stability. frequencies?

- network weights provide conservative estimates of stability. frequencies?
- large frequency differences promote stability. why?

Approximate stability of cluster synchronization

• linearized dynamics:

$$\dot{x}_{intra}^{(1)} = J_1 x_{intra}^{(1)} + \eta_{12} \cos(x_{inter}) x_{intra}^{(2)}$$

• $x_{\text{inter}} \rightarrow (\omega_2 - \omega_1)t$ as $|\omega_2 - \omega_1|$ grows

Approximate stability of cluster synchronization

$$\dot{x}_{\mathsf{intra}}^{(1)} pprox J_1 x_{\mathsf{intra}}^{(1)} + \eta_{12} \cos((\omega_2 - \omega_1) t) x_{\mathsf{intra}}^{(2)}$$

• inter-cluster perturbation is modulated by $\omega_2 - \omega_1$

Approximate stability of cluster synchronization

Approximate stability of cluster synchronization

[Menara et al., 2020 TCNS]

Control of cluster synchronization

Control of functional patterns

so far...

- modeling of neural activity through oscillator network
- modeling of functional patterns via cluster synchronization
- conditions for invariance/stability of cluster synchronization

Control of functional patterns

Control of functional patterns	Control of functional patterns
frequency controlstructural control $u u$ ω	frequency controlstructural controlcoupling control $u \rightarrowu$ $\omega \rightarrowu$ $u \rightarrowu$
 external control of oscillator frequency [Menara et al., 2020 LCSS] design of structural weights and oscillator frequencies [Menara et al., 2019 CDC & 2022 NatComm] 	 external control of oscillator frequency [Menara et al., 2020 LCSS] design of structural weights and oscillator frequencies [Menara et al., 2019 CDC & 2022 NatComm] external control of oscillators coupling [Qin et al., 2022 CDC]
22/35	22/35

Structural control of functional patterns

- control knobs = network weights + oscillator frequencies
- biological constraints: positive weights, sparsity of interventions
- reference signal is $n \times n$ matrix of the phase correlation values (time-varying)

Structural control of functional patterns

- control knobs = network weights + oscillator frequencies
- biological constraints: positive weights, sparsity of interventions
- reference signal is $n \times n$ matrix of the phase correlation values (time-varying) focus on time-invariant patterns, equilibrium assignment^{23/35}

Frequency-synchronization and functional patterns

network dynamics in matrix form (B = incidence matrix):

$$\begin{bmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_n \end{bmatrix} - B \begin{bmatrix} \ddots & & \\ & \sin(\theta_j - \theta_i) \\ & & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ a_{ij} \\ \vdots \end{bmatrix}$$

24/35

Frequency-synchronization and functional patterns

network dynamics in matrix form (B = incidence matrix):

$$\begin{bmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_n \end{bmatrix} - B \begin{bmatrix} \ddots & & \\ & \sin(\theta_j - \theta_i) \\ & & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ a_{ij} \\ \vdots \end{bmatrix}$$

when oscillators are frequency-synchronized:

- oscillator frequencies are all equal to $\omega_{\text{mean}} = \frac{1}{n} \sum \omega_i$
- functional correlations are defined by phase differences
- feasible functional patterns have only n-1 degrees of freedom

Frequency-synchronization and functional patterns

frequency-synchronized configuration:

$$B\begin{bmatrix} \ddots \\ & \sin(\theta_j - \theta_i) \\ & & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ a_{ij} \\ \vdots \end{bmatrix} = \begin{bmatrix} \omega_1 - \omega_{\text{mean}} \\ \vdots \\ \omega_n - \omega_{\text{mean}} \end{bmatrix}$$

to generate a desired functional pattern:

- compute n-1 phase differences corresponding to desired functional values
- determine feasibility of the desired equilibrium (sign/sparsity constraints)
- find network weights and frequencies to satisfy the above equation

Feasibility of a functional pattern

Feasibility of a functional pattern

25/35

25/35

Feasibility of a functional pattern

Feasibility of a functional pattern with positive weights

$\left[-1\right]$	0	0	1]	$\sin(\theta_2 - \theta_1)$			1	a	2	$\omega_1 - \omega_{\text{mean}}$
1	$^{-1}$	0	0		$\sin(heta_3 - heta_2)$			a	23 _	$\omega_2 - \omega_{\rm mean}$
0	1	$^{-1}$	0			$\sin(heta_4 - heta_3)$		a	34	$\omega_3 - \omega_{\rm mean}$
0	0	1	-1	L			$\sin(heta_1 - heta_4)$	a	11	$\omega_4 - \omega_{\text{mean}}$

26/35

easibility of a	functional pattern with	1 positive weights	
	scaled inciden	ce matrix <i>Ē</i>	
$\begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix} \begin{bmatrix} \sin(\theta_2 - \theta_1) & \\ & \sin(\theta_3 - \theta_3) \end{bmatrix}$	$\left(\theta_{2} \right) = \left(\sin(\theta_{4} - \theta_{3}) + \sin(\theta_{1} - \theta_{4}) \right)$	$\begin{bmatrix} a_{12} \\ a_{23} \\ a_{34} \\ a_{41} \end{bmatrix} = \begin{bmatrix} \omega_1 - \omega_{\text{mean}} \\ \omega_2 - \omega_{\text{mean}} \\ \omega_3 - \omega_{\text{mean}} \\ \omega_4 - \omega_{\text{mean}} \end{bmatrix}$

Feasibility of a functional pattern with positive weights

scaled incidence matrix $ar{B}$				
$\begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix} \begin{bmatrix} \sin(\theta_2 - \theta_1) & \\ & \sin(\theta_3 - \theta_2) \end{bmatrix}$	$\sin(heta_4 - heta_3) \ \sin(heta_1 - heta_4) ight]$	$\begin{bmatrix} a_{12} \\ a_{23} \\ a_{34} \\ a_{41} \end{bmatrix} = \begin{bmatrix} a \\ a \\ a \\ a \\ a \end{bmatrix}$	$\omega_1 - \omega_{mean}$ $\omega_2 - \omega_{mean}$ $\omega_3 - \omega_{mean}$ $\omega_4 - \omega_{mean}$

The functional pattern is feasible with pos. weights if:

- the network $ar{B}$ contains a Hamiltonian path ${\cal H}$
- $\omega^{\mathsf{T}}\bar{B}_{\mathcal{H}} > 0$

[Menara et al., 2022 NatComm

Restoring functional connectivity in the damaged brain

brain regions

BOLD

Correlation

27/35

brain

Hemodynamic Model

orain

desired pattern

brain regions

Control

 μ, Δ

 ω, A

Kuramoto Model

noise

- structural data from Human Connectome Project
- (synthetic) functional data inspired by brain injury
- Balloon-Windkessel hemodynamic model for BOLD signals

Restoring functional connectivity in the damaged brain

Beyond brain networks: power redistribution and fault recovery

Summary

Modeling, analysis, control of functional connectivity via cluster synchronization:

Summary

Modeling, analysis, control of functional connectivity via cluster synchronization:

Invariance: balanced weights + homogeneous intra-cluster frequencies

Summary

Modeling, analysis, control of functional connectivity via cluster synchronization:

Invariance: balanced weights + homogeneous intra-cluster frequencies

 $\label{eq:stability:stability:} intra-cluster \ coupling \gg inter-cluster \ coupling$

large inter-cluster frequency differences

weights + frequencies \Rightarrow tight small-gain conditions

30/35

Summary

Modeling, analysis, control of functional connectivity via cluster synchronization:

Invariance: balanced weights + homogeneous intra-cluster frequencies

 $\label{eq:stability:stability:stability:} intra-cluster coupling \gg inter-cluster coupling \\ large inter-cluster frequency differences \\$

weights + frequencies \Rightarrow tight small-gain conditions

Control: graph-theoretic cond. for feasibility of functional patterns structural control of functional patterns in brain/power

30/35

External control of oscillators coupling

Phase-amplitude synchronization

Brain-inspired, context-aware reinforcement learning

References and acknowledgements

Full vs cluster synchronization

Phase differences: $x_{ij} = \theta_j - \theta_i$			
full synchronization: $x \to 0$	cluster synchronization: $egin{array}{c} x_{intra} ightarrow 0 \ x_{inter} = ? \end{array}$		
 Difference dynamics x = F(x) 	◊ Difference dynamics $\dot{x}_{intra} = F(x_{intra}) + G(x_{intra}, x_{inter})$		
	35/35		

Full vs cluster synchronization

