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Cyber-physical systems, opportunities and challenges

Communication

Control

Computation
+

+

Connectivity enables advanced applications, yet is a source of vulnerability

Security is one of the biggest challenges to realize the CPS vision
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Cyber-physical systems are next target of cyber warfare

Replay attack as “out of the movies”:

Infect controllers via USB device

Observe and take control

Deceive and damage centrifuges
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Severity and scale of the cyber-physical security problem

ICS-CERT Annual Report, 2015

Number of Reported Attacks Number of ICS-CERT Reported Vulnerabilities by Sector

Self-reported incidents, likely more

Critical infrastructures are key target

CPS security is of National interest

Economic, political, criminal drivers

Attacks are easy to cast, yet severe

Symantec: “Expect more of these threats” ICS-CERT Annual Report, 2015

Severity of Attacks
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Cyber-physical security vs cyber security and fault tolerance

1 Different systems
Cyber-physical systems comprise dynamical components
Laws of physics → challenges and opportunities for security
E.g., patches may be expensive; models give predictive power

2 Different objectives
Confidentiality, integrity and availability in addition to safety/resilience
Continue operation and guarantee graceful degradation under attack
Attacks are intentional/“worst-case”, faults accidental/“generic”

3 Different methods
Data protection not sufficient, need compatibility with physics (Stuxnet)
Can use sensors/actuators for active security, physical watermarking
Unlike faults, attackers do not obey assumptions and predefined models

Cyber-physical security ̸= cyber security ⊕ fault tolerance
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An independent and fast-growing research field

Cyber-Physical Systems Security: a Systematic Mapping Study, 2016
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Sensor network

Nodes update state based on weighted average of neighboring states

xi (t + 1) =
∑

aijxj(t)

Widely used in consensus, estimation, formation control ...

Misbehaving nodes (faulty, malicious) update their state arbitrarily

How many misbehaving nodes can be tolerated (detected/identified)?
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Sensor network with misbehaving nodes
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Graph G = (V, E)
Weights: aij ̸= 0 ↔ (i , j) ∈ E
Adjacency matrix: A = [aij ]

Misbehaving nodes: K ⊆ V

x(t + 1) = Ax(t) + BKuK(t)

yi (t) = Cixi (t)

BK ⇒ location of misbehaving nodes

uK ⇒ strategy of misbehaving nodes

BK, uK unknown to node i ̸∈ K
yi ⇒ local measurements of node i
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Sensor network with misbehaving nodes
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Graph G = (V, E)
Weights: aij ̸= 0 ↔ (i , j) ∈ E
Adjacency matrix: A = [aij ]

Misbehaving nodes: K ⊆ V

x(t + 1) = Ax(t) + BKuK(t)

yi (t) = Cixi (t)

B4 =
[
0 0 0 1 0 0 0 0

]T
C1 =

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

T
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How many misbehaving nodes can a network tolerate?
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7

65
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4

1

3

Graph connectivity: κ(G)

κ(G): max number of disjoint
paths between any two vertices

Knowing A and yi , how many
nodes K can be detected?

Fundamental detection bound

Generically, any well-behaving node can detect κ(G)−1 misbehaving nodes

Detection: recognize that uK ̸= 0 from measurements

Identification: reconstruct the attack matrix BK from measurements
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Undetectable misbehaving nodes

The misbehaving nodes K remain undetected by node i if and only if

yi (x0,BKuK, t) = yi (x̄0, 0, t)

Equivalently, if and only if

yi (x̃0,BKuK, t) = 0.

Undetectability of misbehaving nodes ⇔ zero dynamics

The misbehaving nodes K remain undetected by node i if and only if uK
excites only the zero dynamics of (A,BK,Ci ), for some initial state x̃0.

Invariant zero structure determines undetectable attack strategies

Solution to: (sI − A)x0 − BKg = 0 and Cx0 + DKg = 0
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At most κ(G)− 1 misbehaving nodes can be detected

Fundamental detection bound

Generically, any well-behaving node can detect κ(G)−1 misbehaving nodes

}

KSubnetwork 1 Subnetwork 2

i

Misbehaving nodes update their state to cancel interconnection signal
⇔

zero dynamics

Im(A12) ⊆ Im(BK), x1(t + 1) = A11x1(t) + A12x2(t) + BKuK(t)
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How many misbehaving nodes can a network tolerate?
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Graph connectivity: κ(G)

Knowing A and yi , how many
nodes K can be identified?

Fundamental identification bound

Generically, any well-behaving node can identify
⌊
κ(G)−1

2

⌋
misbehaving nodes

Identifiability ⇔ zero dynamics of (A, [BK BR],Ci )
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An example, and some considerations
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Connectivity κ(G) = 3

Generically, 2 misbehaving node
can be detected

Generically, 1 misbehaving node
can be identified

To remain undetected/unidentified, attacks must be chosen carefully

Faults are generic; different bounds (security ̸= fault tolerance)

Genericity: bounds hold for “almost all” choices of edge weights

Tradeoff between connectivity and security (system design, more later)
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Connections to Byzantine Generals problem, and extensions
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Connections to Byzantine Generals problem, and extensions

Our bounds are in accordance to results for Byzantine Generals. Moreover,

1 “zero dynamics” ⇔ “resilience” ⇔ “Byzantine bounds”

2 linear protocols are maximally resilient to misbehaving nodes

In fact, our bounds include and generalize many existing security notions:

”zero dynamics” ⇒ “2s-observability” (secure estimation) ...
[P. Tabuada et al. 2014]

”zero dynamics” ⇒ “securable subspace” (as unobs. subspace) ...
[P. R. Kumar et al. 2018]

”zero dynamics” ⇒ other undetectable attacks “stealthy”,“covert”...
[S. Sastry et al. 2011], [R. Smith 2015], [B. Sinopoli et al. 2017]

“zero dynamics” ⇒ remedial controls against stealthy attacks ...
[K. Johansson et al. 2015]
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Model of power network

Small-signal structure-preserving power network model:

1 transmission network: generators ■□ , buses •◦ ,
DC load flow assumptions, and network
susceptance matrix Y = Y T

2 generators ■□ modeled by swing equations:

Mi θ̈i + Di θ̇i = Pmech.in,i −
∑

j
Yij ·

(
θi − θj

)
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3 buses •◦ with constant real power demand:

0 = Pload,i −
∑

j
Yij ·

(
θi − θj

)
⇒ Linear differential-algebraic sys: Eẋ = Ax + P

YjkYik
k

Pload,k
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Models of attackers and monitors

Plant SensorsControl Center

State Attack Data AttackActuator Attack

Eẋ(t) = Ax(t)+Bu(t) (state and actuator attack)

y(t) = Cx(t)+Du(t) (data substitution attack)

Attackers are colluding and omniscient (model, params, state)

Attackers aim to change physical state and mislead monitors

Monitors aim to detect/identify attacks via measurements
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Modeling Stuxnet with unknown inputs and matrices

Plant SensorsControl Center

State Attack Data AttackActuator Attack

Previously recorded
measurements

Du1(t)

Du2(t) = −Cx(t)

Bu3(t)

System dynamics:

Eẋ(t) = Ax(t) + Bu3(t)

y(t) = Cx(t) + Du1(t) + Du2(t)
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Undetectable attacks in power systems

Equivalent characterizations of undetectable attacks:

1 Vulnerability: undetectable attack y(x1, 0, t) = y(x2, u, t)

2 System theory: intruder/monitor system has invariant zeros

3 Graph theory: # attack signals > size of input/output linking
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Design of targeted attacks

Targeted attack design via geometric /
optimal control (dual to detection)

Malicious coalition: {1, 9} (PacNW)

Attack input minimizes ∥ω9(t)∥L∞

subject to ∥ω16(t)∥L∞ ≥ 1 (Utah)

⇒ non-colluding generators are damaged
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Distributed monitor design
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Mitigating attacks

Attacked
Node

How to limit the effect of attacks on the system?

Controller redesign, containment strategy, design for security ...
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Resilience of large network systems

Network size ≫ attacked nodes

ẋ = Ax + Bu

A → interaction graph

B → attacked nodes

Attacked
Node

Controllability Gramian: W =

∫ ∞

0
eAtBBTeA

Tt dt

Small λmin(W) ⇔ Small controllability degree

Large λmin(W) ⇔ Large controllability degree
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Large networks are resilient to few attacked nodes

Upper bound on controllability degree

Let A be diagonalizable as A = VΛV−1. Then,

λmin(W) ≤ κ4(V )

2s(A)
ρ

#nodes
#attacked nodes

κ(V ) = σmax(V )/σmin(V ) (condition number; non-normality degree)

s(A) = −maxℜ (λ(A)) (stability margin)

ρ = max
∣∣∣ λi (A)−λj (A)
λ∗
i (A)+λj (A)

∣∣∣2 (< 1 when A is stable)

Resilience increases exponentially with #nodes
#attacked nodes

(bounded non-normality degree and stability margin)

Certain network modes could still be controllable by attacker
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Gramian assignment for selective network resilience

Time (sec)
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?

How to choose the network weights to protect critical nodes
and facilitate attack detection from monitoring nodes?

Fixed set S of vulnerable nodes ⇒ B

Effect of attack on node i ⇒ H2
2(A,B, e

T
i ) = Wii

(energy impulse response from B to i = i-th diagonal entry Gramian)

Network design for Gramian assignment

Given a graph G, {ω1, . . . , ωn} > 0, and an input matrix B, find a weighted
adjacency matrix A such that the Gramian W of A,B satisfies Wii = ωi .
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Network design for selective security

Network design for Gramian assignment

If A is stable and “uniformly input-connected” with control impacts βi ,

Wii = βi .
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Select weights to assign control impacts ⇒ Network resilience by design
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Network design for selective security

Network design for Gramian assignment

If A is stable and “uniformly input-connected” with control impacts βi ,

Wii = βi .

Control impact along a path

The control impact along (i1, i2, . . . ip) is

βi1,...ip =
1

|ai1i1 |

∣∣∣∣ai2i1ai1i2

∣∣∣∣ ∣∣∣∣ai3i2ai2i3

∣∣∣∣ · · · ∣∣∣∣aip ip−1

aip−1ip

∣∣∣∣
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Network design for selective security

Network design for Gramian assignment

If A is stable and “uniformly input-connected” with control impacts βi ,

Wii = βi .

Uniformly input-connected network

A network is uniformly input-connected if

it is sign-skew-symmetric (aijaji < 0, aii < 0 for i ∈ S), and
for every node i , all control impacts to i are equal to βi ∈ R>0.
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Network design for selective security

Network design for Gramian assignment

If A is stable and “uniformly input-connected” with control impacts βi ,

Wii = βi .
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