D. Gadginmath and V. Krishnan and F. Pasqualetti, Data-Driven Feedback Linearization using the Koopman Generator. IEEE Transactions on Automatic Control, 2024. To appear.
T. Guo and A. A. {Al Makdah} and V. Krishnan and F. Pasqualetti, Imitation and Transfer Learning for LQG Control. IEEE Control Systems Letters, 7:2149-2154, 2023.
A. A. {Al Makdah} and V. Krishnan and F. Pasqualetti, Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness. IEEE Open Journal of Control Systems, 1:85-99, 2022.
V. Krishnan and F. Pasqualetti, Data-Driven Attack Detection for Linear Systems. IEEE Control Systems Letters, 5(2):671-676, 2020. [PDF]
Conference Articles
A. A. {Al Makdah} and V. Krishnan and V. Katewa and F. Pasqualetti, Behavioral Feedback for Optimal LQG Control. IEEE Conf. on Decision and Control, Cancún, Mexico, pages 4660-4666, December 2022. [PDF]
D. Gadginmath and V. Krishnan and F. Pasqualetti, Direct vs Indirect Methods for Behavior-based Attack Detection. IEEE Conf. on Decision and Control, Cancún, Mexico, December 2022.
V. Krishnan and F. Pasqualetti, On Direct vs Indirect Data-Driven Predictive Control. IEEE Conf. on Decision and Control, Austin, TX, pages 736-741, December 2021.
V. Krishnan and A. A. {Al Makdah} and F. Pasqualetti, Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing. Advances in Neural Information Processing Systems, Vancouver, Canada, pages 10924-10935, December 2020. [PDF]