K. Elamvazhuthi and S. Oymak and F. Pasqualetti, Noise in the reverse process improves the approximation capabilities of diffusion models. , 2024. Submitted.
D. Gadginmath and S. Tripathi and F. Pasqualetti, Fusing Multiple Algorithms for Heterogeneous Online Learning. , 2024. Submitted.
C. De Persis and D. Gadginmath and F. Pasqualetti and P. Tesi, Feedback linearization through the lens of data. IEEE Transactions on Automatic Control, 2024. Submitted.
D. Gadginmath and V. Krishnan and F. Pasqualetti, Data-Driven Feedback Linearization using the Koopman Generator. IEEE Transactions on Automatic Control, 2024. To appear.
F. Celi and G. Baggio and F. Pasqualetti, Closed-form and Robust Formulas for Data-driven LQ Control. Annual Reviews in Control, 56:2023.
T. Guo and A. A. {Al Makdah} and V. Krishnan and F. Pasqualetti, Imitation and Transfer Learning for LQG Control. IEEE Control Systems Letters, 7:2149-2154, 2023.
F. Celi and G. Baggio and F. Pasqualetti, Distributed Data-Driven Control of Network Systems. IEEE Open Journal of Control Systems, 2:93-107, 2023.
A. A. {Al Makdah} and V. Krishnan and F. Pasqualetti, Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness. IEEE Open Journal of Control Systems, 1:85-99, 2022.
Y. Qin and T. Menara and S. Oymak and S. Ching and F. Pasqualetti, Non-Stationary Representation Learning in Sequential Linear Bandits. IEEE Open Journal of Control Systems, 1:41-56, 2022.
F. Celi and F. Pasqualetti, Data-driven Meets Geometric Control: Zero Dynamics, Subspace Stabilization, and Malicious Attacks. IEEE Control Systems Letters, 6:2569-2574, 2022.
G. Baggio and D. S. Bassett and F. Pasqualetti, Data-Driven Control of Complex Networks. Nature Communications, 12(1429):2021. [PDF]
V. Krishnan and F. Pasqualetti, Data-Driven Attack Detection for Linear Systems. IEEE Control Systems Letters, 5(2):671-676, 2020. [PDF]
A. A. {Al Makdah} and V. Katewa and F. Pasqualetti, A Fundamental Performance Limitation for Adversarial Classification. IEEE Control Systems Letters, 4(1):169-174, 2019. [PDF]
G. Baggio and V. Katewa and F. Pasqualetti, Data-driven Minimum-Energy Controls for Linear Systems. IEEE Control Systems Letters, 3(3):589-594, 2019. [PDF]
Conference Articles
S. Tripathi and A. A. {Al Makdah} and F. Pasqualetti, Time Varying Quadratic Optimization With Unknown Objective Function Using Noisy Gradients. American Control Conference, Denver, CO, June 2024. Submitted.
S. Zhang and D. Gadginmath and F. Pasqualetti, Predicting AI Agent Behavior through Approximation of the Perron-Frobenius Operator. Advances in Neural Information Processing Systems, Vancouver, Canada, December 2024.
Z. Du and S. Oymak and F. Pasqualetti, Prediction for Dynamical Systems via Transfer Learning. IEEE Conf. on Decision and Control, Milan, Italy, December 2024. To appear.
S. Cianchi and F. Celi and P. Tesi and F. Pasqualetti, Data-driven Expressions for the Control of Network Systems with Asynchronous Experiments. IEEE Conf. on Decision and Control, Milan, Italy, December 2024. To appear.
K. Elamvazhuthi and D. Gadginmath and F. Pasqualetti, Denoising Diffusion-Based Control of Nonlinear Systems. IEEE Conf. on Decision and Control, Milan, Italy, December 2024. To appear.
A. A. {Al Makdah} and F. Pasqualetti, Model-based and Data-based Dynamic Output Feedback for Externally Positive Systems. IEEE Conf. on Decision and Control, Milan, Italy, December 2024. To appear.
T. Guo and A. A. {Al Makdah} and P. Tesi and F. Pasqualetti, A Data-driven Stability Test for LTI systems. IEEE Conf. on Decision and Control, Milan, Italy, December 2024. To appear.
K. Elamvazhuthi and X. Zhang and S. Oymak and F. Pasqualetti, A Score-based Deterministic Diffusion Algorithm with Smooth Scores for General Distributions. AAAI Conference on Artificial Intelligences, Washington, DC, February 2024.
Y. Chen and A. M. Ospina and F. Pasqualetti and E. Dall'Anese, Multi-Task System Identification of Similar Linear Time-Invariant Dynamical Systems. IEEE Conf. on Decision and Control, Marina Bay Sands, Singapore, December 2023. To appear. arXiv preprint arXiv:2301.01430.
F. Celi and G. Baggio and F. Pasqualetti, Data-driven Eigenstructure Assignment for Sparse Feedback Design. IEEE Conf. on Decision and Control, Marina Bay Sands, Singapore, December 2023.
A. A. {Al Makdah} and F. Pasqualetti, On the Sample Complexity of the Linear Quadratic Gaussian Regulator. IEEE Conf. on Decision and Control, Marina Bay Sands, Singapore, December 2023.
C. {De Persis} and D. Gadginmath and F. Pasqualetti and P. Tesi, Data-Driven Feedback Linearization with Complete Dictionaries. IEEE Conf. on Decision and Control, Marina Bay Sands, Singapore, December 2023. To appear.
K. Elamvazhuthi and X. Zhang and S. Oymak and F. Pasqualetti, Learning on Manifolds: Universal Approximations Properties using Geometric Controllability Conditions of Neural ODEs. Learning for Dynamics & Control, Philadelphia, PA, USA, June 2023. To appear.
Y. Qin and Y. Li and F. Pasqualetti and M. Fazel and S. Oymak, Stochastic Contextual Bandits with Long Horizon Rewards. AAAI Conference on Artificial Intelligences, Washington, DC, February 2023. To appear.
A. A. {Al Makdah} and V. Krishnan and V. Katewa and F. Pasqualetti, Behavioral Feedback for Optimal LQG Control. IEEE Conf. on Decision and Control, Cancún, Mexico, pages 4660-4666, December 2022. [PDF]
D. Gadginmath and V. Krishnan and F. Pasqualetti, Direct vs Indirect Methods for Behavior-based Attack Detection. IEEE Conf. on Decision and Control, Cancún, Mexico, December 2022.
F. Celi and G. Baggio and F. Pasqualetti, Closed-form Estimates of the LQR Gain From Finite Data. IEEE Conf. on Decision and Control, Cancún, Mexico, pages 4016-4021, December 2022.
Y. Qin and T. Menara and S. Oymak and S. Ching and F. Pasqualetti, Representation Learning for Context-Dependent Decision-Making. American Control Conference, Atlanta, GA, June 2022.
F. Celi and G. Baggio and F. Pasqualetti, Distributed Learning of Optimal Controls for Linear Systems. IEEE Conf. on Decision and Control, Austin, TX, pages 5764-5769, December 2021.
V. Krishnan and F. Pasqualetti, On Direct vs Indirect Data-Driven Predictive Control. IEEE Conf. on Decision and Control, Austin, TX, pages 736-741, December 2021.
A. A. {Al Makdah} and V. Katewa and F. Pasqualetti, Robust Adversarial Classification via Abstaining. IEEE Conf. on Decision and Control, Austin, TX, pages 763-768, December 2021.
V. Krishnan and A. A. {Al Makdah} and F. Pasqualetti, Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing. Advances in Neural Information Processing Systems, Vancouver, Canada, pages 10924-10935, December 2020. [PDF]
R. Anguluri and A. A. {Al Makdah} and V. Katewa and F. Pasqualetti, On the Robustness of Data-Driven Controllers for Linear Systems. Learning for Dynamics & Control, San Francisco, CA, USA, pages 404-412, June 2020. [PDF]
G. Baggio and F. Pasqualetti, Learning Minimum-Energy Controls from Heterogeneous Data. American Control Conference, Denver, CO, USA, July 2020. [PDF]
A. A. {Al Makdah} and V. Katewa and F. Pasqualetti, Accuracy Prevents Robustness in Perception-based Control. American Control Conference, Denver, CO, USA, July 2020. [PDF]